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Abstract. Land cover change (LCC) detection using high-resolution data presents 
several challenges considering the temporal dynamics and spatial variability. This study 
introduces a robust methodology that leverages the SIROC (Sibling Regression for 
Optical Change detection) (Kondmann, L., 2022) algorithm to effectively detect LCC 
using a pair of satellite acquisitions from the same sensor, covering the same area but 
acquired at different times. 
Our approach utilizes SIROC, an unsupervised model, to identify potential changes 
between image pairs without the need for manually labeled data. SIROC's capability to 
generate reliable change detection outputs makes it a suitable choice for many use cases 
requiring a semi-automatic approach, especially where land feature variability is 
heterogeneous. 
The data are pre-processed by applying coregistration and radiometric correction to 
ensure spatial and radiometric consistency across all images. Additionally, cloud 
screening and atmospheric correction are applied to Sentinel-2 data to enhance data 
quality (Frantz, D., 2019). 
This methodology enables the mapping of transitions between land cover classes using 
diverse inputs from Sentinel-1 and Sentinel-2, offering a scalable and adaptable tool for 
environmental monitoring and analysis. Future enhancements could integrate additional 
data sources such as Digital Elevation Models (DEM) to further refine change detection 
accuracy. The flexibility and reliability of the SIROC-based approach ensure its 
applicability across various geographical regions and conditions, making it an asset for 
continuous and accurate land cover change detection. 
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Introduction 

Land cover change (LCC) detection is a fundamental aspect of environmental 
monitoring, providing critical insights into the dynamic processes that shape terrestrial 
ecosystems. Accurate detection and analysis of LCC are essential for addressing 
various environmental and socio-economic challenges, including climate change 
mitigation, biodiversity conservation, urban planning, and infrastructure development. 
According to the Intergovernmental Panel on Climate Change (IPCC), land-use and 
land-cover changes significantly contribute to global greenhouse gas emissions, 
influencing climate patterns and ecosystem services (IPCC, 2019). 

In this context, deforestation and forest degradation are a significant concern due to 
their implications for biodiversity loss, disruption of water cycles, and carbon emissions 
(Food and Agriculture Organization [FAO], 2020). Related to forest monitoring, an 
application of LCC detection is also burned area mapping. The frequency and intensity 
of wildfires have increased in recent years, exacerbated by climate change and human 
activities (Bowman et al., 2020). Remote sensing technologies enable the timely and 
accurate mapping of burned areas at low resolution (Chuvieco et al., 2019) but higher 
resolution are made possible by modern satellites like Copernicus Sentinels. 

As an additional topic, urbanization is a defining trend of the 21st century, with the 
United Nations projecting that 68% of the global population will reside in urban areas 
by 2050 (United Nations, 2018). Urban changes, including the expansion of built-up 
areas and the transformation of land use patterns, are typical use cases of LCC detection 
methods. In addition, Infrastructure building or damage monitoring relies heavily on 
LCC detection as the ability to detect changes in infrastructures is important for disaster 
response, military planning, and compliance assessment with international agreements 
(Li et al., 2019).  

Despite the importance of LCC detection across these applications, several challenges 
persist, especially when utilizing very high-resolution (VHR) satellite imagery. The 
limited availability of VHR data, high costs, and the complexity associated with 
processing and analyzing time-series imagery hinder effective monitoring efforts (Zhu 
et al., 2017). Traditional change detection methods often require extensive labeled 
datasets and may not perform effectively in heterogeneous landscapes where land cover 
types exhibit significant variability. 

To address these challenges, this study has selected a robust methodology that leverages 
the SIROC (Spatial Context Awareness for Unsupervised Change Detection in Optical 
Satellite Images) algorithm for effective LCC detection using minimal bi-temporal 
images. The SIROC algorithm was introduced by Kondmann et al. (2022) as an 
unsupervised change detection method that incorporates spatial context awareness to 
enhance detection accuracy in optical satellite imagery. SIROC leverages the spatial 
relationships between pixels to effectively distinguish between true land cover changes 
and noise or transient phenomena. By modeling the local neighborhoods of pixels, the 
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algorithm captures structural and contextual information that is critical for accurate 
change detection in heterogeneous landscapes. The proposed methodology offers a 
scalable and adaptable tool for environmental monitoring and analysis. Sentinel-1's 
synthetic aperture radar (SAR) capabilities provide all-weather, day-and-night imaging, 
while Sentinel-2's multispectral optical data contribute detailed spectral information 
(European Space Agency [ESA], 2020). The combination of these data sources 
enhances the robustness of change detection outcomes, ensuring applicability across 
different geographical regions and environmental conditions. 

This study aims to demonstrate the effectiveness of a methodology based on the SIROC 
combined with operational tools for the generation of change detection maps in an 
flexible and adaptable way. 

Methodology 

The implementation of the our methodology is based on the following steps: 
1. Data Acquisition and Preprocessing: Bi-temporal images from Sentinel-1 and 

Sentinel-2 are obtained for the study area. Preprocessing includes radiometric 
calibration, atmospheric correction for optical data using FORCE library (Frantz, 
D, 2019), speckle filtering for SAR data, and precise geometric co-registration to 
ensure accurate pixel alignment (ESA, 2020). 

2. Feature Extraction and Index Calculation: Appropriate spectral bands and indices 
are selected based on the specific use case: 

a. Urban Areas: RGB bands and SAR backscatter coefficients (Kondmann et al.) 
b. Forests: SWIR bands and vegetation indices sensitive to biomass (Tucker, C. 

J., Kondmann et al.) 
c. Burned Areas: NBR and dNBR indices. 
d. Agriculture: MSAVI, NDVI, and other crop-specific indices (Tucker, C. J., 

Kondmann et al.) 
3. Application of SIROC Algorithm: The SIROC algorithm processes the extracted 

features, modeling the local spectral-spatial distributions and computing change 
probabilities. Algorithm parameters are tuned according to the characteristics of 
the input data and the land cover types under investigation. 

4. Change Map Generation and Refinement: Change probability maps are generated 
and thresholded to produce binary change maps. Post-processing techniques, such 
as morphological filtering, are applied to refine the results and eliminate noise. 

5. Validation and Accuracy Assessment: The detected changes are validated using 
ground truth data, high-resolution imagery, or existing land cover maps. 
Performance metrics, including overall accuracy and the kappa coefficient, are 
calculated to assess the effectiveness of the methodology (Congalton & Green, 
2019). 
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Results 

In this section we present some results on Urban and Forest monitoring domain. 

Urban environments are characterized by diverse materials and complex structures, 
making change detection challenging. The LCC tool addresses this by combining the 
red, green, and blue (RGB) bands from Sentinel-2 with synthetic aperture radar (SAR) 
data from Sentinel-1. Optical RGB bands provide detailed spectral information about 
surface materials, while SAR data offer insights into surface roughness and structural 
features regardless of weather conditions or illumination (Gong et al., 2017). Here are 
some examples derived from SAR and Optical data. 
 

 
Fig. 1. Comparison of Sentinel-1 SAR imagery from two different dates highlighting 
infrastructure changes. The image on the left, taken on November 10, 2021, shows the pre-change 
condition, while the image on the right, captured on November 22, 2021, illustrates the post-
change scenario, with the detected change highlighted in the yellow box. 

 
Fig. 2. Comparison of Planet optical imagery from two different dates showing land cover 
changes. The image on the left, taken on May 31, 2023, depicts the pre-change condition, while 
the image on the right, captured on September 8, 2023, shows the post-change scenario. The 
yellow-highlighted areas indicate the detected changes in land cover due to rapid changes due to 
the construction of a Golf field. 
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Forest Change Detection and Burned Area mapping with SWIR Bands 

Detecting changes in forested areas, including deforestation and degradation, requires 
sensitivity to vegetation structure and moisture content. The short-wave infrared 
(SWIR) bands from Sentinel-2 are particularly effective for this purpose due to their 
responsiveness to water content in vegetation (Skakun et al., 2017). The LCC tool 
utilizes SWIR bands to improve the SIROC algorithm's ability to identify changes in 
forest biomass and canopy cover. By focusing on SWIR spectral information, the 
methodology enhances the detection of subtle changes within forests, such as selective 
logging or forest thinning. The spatial context modeling in SIROC helps distinguish 
between natural seasonal variations and anthropogenic alterations. For burned area 
mapping, spectral indices that highlight fire-induced changes in vegetation are 
employed. The Normalized Burn Ratio (NBR), which utilizes the near-infrared (NIR) 
and SWIR bands, is sensitive to the presence of charred vegetation and ash (Key & 
Benson, 2006). The differenced NBR (dNBR) accentuates the contrast between pre- 
and post-fire conditions. Here are some results from Multi-spectral data.  
 

 
 



 

 152 

Fig. 3. Comparison of optical imagery showing burned area detection using a land cover change 
detection methodology. The violet regions indicate the areas detected by the algorithm, 
representing the initial assessment of burned areas. The green boundaries outline the estimated 
extent of the burned areas at the end of the fire season.  
 

Conclusions 
In this paper we demonstrated that by integrating a robust unsupervised change 
detection algorithm like SIROC and selecting spectral bands and indices for different 
use cases, the proposed methodology effectively detects land cover changes across 
various environments. The spatial context awareness and unsupervised nature of 
SIROC, combined with the fusion of Sentinel-1 and Sentinel-2 data, provide a robust 
and adaptable approach for monitoring urban development, forest alterations, burned 
areas, and agricultural dynamics. 
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