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Abstract. The extraction of high-resolution land cover data over large areas has many 
challenges, i.e.: temporal dynamics, spatial variability, noise, and high dimensionality. 
To address these challenges, we present a comprehensive methodology leveraging Earth 
Observation satellites data, advanced pre-processing techniques and Artificial 
Intelligence models. Central to our approach is the use of 4D data cubes, which enable 
consistent analysis across varying temporal, spatial and spectral dimensions. 

 
Starting from the generation of periodic cloudless composites of Sentinel-2 acquisitions, 
we employ flexible models derived from Visual Transformers (ViT) (Dosovitskiy, A., 
2020), specifically the Time Series Transformer Plus (TSiTPlus) (Oguiza, I.). In this 
approach, each pixel is represented as a time series, and the model learns to recognize 
and classify the land cover label based on the spectral signature observed over the 
period. This allows the model to prioritize significant features, enhancing classification 
accuracy. 

 
Key components of our methodology are based on a flexible and adaptable process for: 
• Data Preparation: Satellite images are pre-processed by applying radiometric 

correction, cloud screening, and atmospheric correction, enabling the generation of 
high-quality, analysis-ready data for environmental monitoring applications. 
(Frantz, D., 2019) 

• Model Training: The TSiTPlus model is trained using advanced training 
frameworks with early stopping and class-balanced sampling, improving 
generalization and reducing overfitting. 

• Model Evaluation and Adaptation: Performance is evaluated using accuracy 
metrics and confusion matrices, followed by error analysis to refine and retrain the 
model as needed. 
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• Deployment: The trained model is deployed in a scalable container service, either 
on-premises or in the cloud, for efficient land cover classification over large areas. 

This methodology has already shown promising results in various use cases, such as 
land cover mapping, forest health monitoring, and crop monitoring. Future work 
includes expanding the 4D datacube with additional information, such as integrating 
data from Sentinel-1 or Landsat satellites, as well as Digital Elevation Models (DEM). 

Introduction 

Land cover mapping is important for a vast range of environmental sciences, providing 
data for a multitude of applications including agriculture monitoring, forest 
management, urban planning, and climate modeling. Accurate and up-to-date land 
cover information is used for understanding terrestrial ecosystems and their responses 
to natural and anthropogenic influences (Friedl et al., 2010). 

In agriculture, land cover data are utilized to monitor crop conditions, assess 
agricultural productivity, and support food security initiatives. Satellite-derived land 
cover maps enable the identification of crop types and the evaluation of phenological 
stages, which are critical for yield prediction and agricultural modeling (Dorigo et al., 
2015). Moreover, generic land cover data support environmental and climate models. 
Land surface characteristics influence energy balance, hydrological processes, and 
biogeochemical cycles, which are integral components of climate models (IPCC, 2019). 
Accurate land cover maps enhance the parameterization of these models, leading to 
better predictions of climate change impacts and aiding in the development of 
mitigation and adaptation strategies (Bonan, 2008).  

Despite the significance of land cover mapping, extracting high-resolution data over 
large areas poses several challenges. Temporal dynamics such as seasonal vegetation 
changes, spatial variability across different ecosystems, noise in satellite data, and the 
high dimensionality of multispectral imagery complicate the classification process (Zhu 
et al., 2019). Addressing these challenges requires advanced methodologies that can 
efficiently process large datasets while maintaining high accuracy. 

Advancements in remote sensing technology, such as the European Space Agency's 
Sentinel-2 satellites, provide high-resolution, multispectral imagery with frequent 
revisit times, facilitating continuous monitoring of land surfaces (Drusch et al., 2012). 
The use of four-dimensional (4D) data cubes enables the integration of spatial, 
temporal, and spectral information, allowing for more comprehensive analysis of land 
cover changes (Ma et al., 2020). 

Furthermore, the application of advanced machine learning models, particularly 
transformer-based architectures, has shown promise in handling complex classification 
tasks involving large and high-dimensional datasets (Vaswani et al., 2017). Models like 
the Time Series Transformer Plus (TSiTPlus) leverage self-attention mechanisms to 
capture significant temporal and spatial features, improving classification performance 
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in land cover mapping applications (Li et al., 2021). These models can prioritize 
relevant features and mitigate the effects of noise and class imbalance, addressing key 
challenges in large-scale land cover classification. 

By integrating high-quality satellite data with sophisticated processing techniques and 
machine learning models, it is possible to overcome existing challenges in land cover 
mapping. The proposed approach described later has obtained optimal results 
supporting various applications across environmental monitoring, resource 
management, and modeling efforts.  

Methodology 

The proposed methodology integrates pre-processing techniques, deep learning 
classification models, and post-processing enhancements to improve land cover 
classification using Sentinel-2 data.  

Data Preprocessing 

The initial phase involves the preprocessing of Sentinel-2 imagery to produce clean and 
consistent time series suitable for classification. Satellite observations are often affected 
by atmospheric conditions, cloud cover, and seasonal variations, which can introduce 
noise and inconsistencies in the data. To mitigate these issues, the Framework for 
Operational Radiometric Correction for Environmental monitoring (FORCE) 
processing framework is employed (Frantz, 2019). The FORCE framework facilitates 
automated radiometric correction, cloud masking, and the generation of Analysis Ready 
Data (ARD). Specifically, the time series function within FORCE is utilized to generate 
consistent composites over the study period.  

Classification 

The classification step involves applying deep learning techniques to perform pixel-
based land cover classification. Prior to model training, preparatory steps are 
undertaken to address challenges such as class imbalance and the acquisition of labeled 
training data. Class imbalance occurs when certain land cover classes are 
underrepresented in the dataset, which can bias the classifier towards more prevalent 
classes. To address this, techniques such as oversampling of minority classes or 
implementing weighted loss functions during model training are employed. These 
methods ensure that the classifier maintains sensitivity to all land cover types and does 
not disproportionately favor dominant classes. Training data are sourced from 
OpenStreetMap (OSM), an open-source platform providing geospatial data contributed 
by a global community (Haklay & Weber, 2008).  

Training point sampling is conducted to select representative pixels from the Sentinel-
2 imagery that correspond to the OSM-derived labels. The sampling strategy ensures 
adequate spatial distribution and coverage of different land cover types, which is crucial 
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for training a robust classifier. These sampled points form the basis for training the 
Time Series Transformer Plus (TSiTPlus) model (Dosovitskiy, A. 2020, Oguiza, I.), a 
deep learning architecture designed for handling sequential data and capturing temporal 
dependencies (Li et al., 2021). The TSiTPlus model leverages self-attention 
mechanisms to process the high-dimensional and temporally rich datasets generated 
from Sentinel-2 imagery. The model's architecture enables it to prioritize significant 
temporal and spatial features within the time series data, improving classification 
performance. During training, optimization techniques such as early stopping are 
applied to prevent overfitting and enhance the model's generalization capabilities. 

Post-Processing 

Following the classification, post-processing steps are implemented to refine the land 
cover maps and enhance their applicability for specific use cases. One of the challenges 
addressed at this stage is the spatial resolution limitation of Sentinel-2 imagery, which, 
at 10 meters for certain bands, may not adequately capture small or linear features such 
as narrow roads or streams. To overcome this limitation, land use mapping data are 
integrated to enrich the classification results. Incorporating land use information allows 
for the enhancement of attribute details and improves the geometric representation of 
features that are difficult to classify due to resolution constraints. This integration is 
achieved through spatial analysis techniques that adjust the classification outputs based 
on known land use patterns. For example, linear features identified in land use datasets 
can be overlaid onto the classification results to improve the delineation of roads or 
waterways. Object-based image analysis methods may also be applied to refine the 
boundaries and attributes of specific classes, enhancing the overall accuracy of the land 
cover map. Consistency checks and validation procedures are performed to ensure that 
the post-processed maps accurately represent real-world land cover. This may involve 
cross-referencing with higher-resolution imagery or ground truth data where available. 
The validation process is critical for assessing the reliability of the classification and 
identifying areas that may require further refinement. 

Results 

In this section we present some results on generic Land Cover and on Agricultural crop 
mapping. 

The figure displays a comparative analysis between classified land cover data and 
corresponding Sentinel 2 image. The land cover map, generated using Sentinel-2 
imagery, highlights various land use categories shown in the legend. 
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Fig. 1. The figure presents a comparative view of the Salerno area, with the Sentinel-2 satellite 
imagery displayed on the left and the corresponding land cover classification on the right. The 
Sentinel-2 image shows the natural and urban features of the region in high-resolution, capturing 
the heterogeneous landscape, including densely vegetated areas, urban settlements, and 
agricultural fields. The land cover map on the right, generated through a classification process, 
categorizes the terrain into distinct classes represented by different colors. For instance, densely 
vegetated areas such as forests are marked in red, urban areas In cyan, water bodies in blue, 
grassland areas in light beige, and agricultural lands or open areas in shades of orange or yellow. 
 
Agricultural Crop monitoring 

The image illustrates a result derived from the proposed methodology, showcasing a 
crop classification map generated by the Land Cover processor for monitoring soybean 
and coffee plantations in a remote Brazilian region. The methodology integrates 
Sentinel-2 satellite data with advanced time series analysis, leveraging NDVI cycles to 
differentiate between crops and monitor their growth phases. This result exemplifies 
how the processing framework accurately captures spatial and temporal crop patterns, 
supporting precision agriculture and resource management in geographically isolated 
areas (Drusch et al., 2012; Dorigo et al., 2015). 
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Fig. 2. The image illustrates a map of soybean and coffee crops generated using the Land Cover 
processor, specifically designed for remote monitoring of agricultural regions. The map, 
produced from Sentinel-2 data, highlights distinct crop areas: orange polygons represent soybean 
fields, while brown polygons indicate coffee plantations. An inset displays a typical Normalized 
Difference Vegetation Index (NDVI) cycle for soybean in Brazil, which is used to track crop 
growth phases, showing both the first and second harvest periods. This kind of remote sensing 
facilitates precision agriculture and crop management in geographically isolated areas. 
 

Conclusions 

This study presents a comprehensive methodology for land cover classification using 
Sentinel-2 data, advanced time series analysis, and machine learning techniques. The 
methodology addresses key challenges such as cloud cover, temporal variability, and 
class imbalance through a careful preprocessing workflow using the FORCE 
framework and the Time Series Transformer Plus (TSiTPlus) model for classification. 
By integrating satellite data with crowdsourced information from OpenStreetMap, the 
process enhances both the accuracy and detail of land cover maps, especially in remote 
or data-scarce regions. The results, including the accurate monitoring of agricultural 
crops like soybean and coffee and generic land cover generation, demonstrate the 
potential of this approach to support precision agriculture, sustainable resource 
management, and environmental monitoring.  
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