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Abstract. Leaf Area Index (LAI) is a key variable for spatiotemporal modelling 
and analysis of several land surface processes. LAI can be successfully estimate 
by means of Vegetation Indices (VIs), retrieved from multispectral satellite 
images, however the different VIs show variable estimation uncertainty in 
relation to vegetation characteristics and soil background condition. In particular, 
VIs can show saturation behaviour at medium/high vegetation density. Thus, in 
this study we aimed at implementing parametric approach considering VIs 
belonging to three different classes computed on visible, red-edge and short-wave 
infrared spectral band combination provided by MSI sensor onboard Sentinel-2 
satellites constellation.  

Keywords: Parametric method; Sentinel-2 vegetation Indices, wheat; maize; 
sensitivity analysis. 

1 Introduction 

Leaf Area Index (LAI) is a dimensionless variable, defined as the leaf area per unit 
ground surface area [1,2]. It describes several canopy scale processes related to light 
interception and crop physiology (e.g. photosynthesis and respiration), as well as soil-
plant relationships that affect evapotranspiration and nutrient use efficiency. Therefore, 
an accurate determination of LAI is a key for spatiotemporal modelling and analysing 
of several land surface processes related to agroecosystem dynamics [3,4]. Several 
approaches based on remotely sensed data have been utilized for assessing LAI. 

Among the methodologies parametric regression using Vegetation Indices (VIs) is 
the most widely used. In particular, VIs approach is based on the analysis of the relation 
between spectral data, combination of spectral bands and biophysical parameters. 

However, the use of VIs poses several issues, which currently limit their application 
to local cases reducing a general exportability in other context differ from the ones 
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where the relation has been generated. The major limitation of using vegetation indices 
is related to the saturation effect that occurs at certain vegetation densities, which results 
in a non-linear response of VIs to LAI variation. This effect is particularly evident for 
the well-known Normalised Different Vegetation Index (NDVI) when  [5] computed 
with broad bands in red and near-infrared (NIR) portion of the electromagnetic 
spectrum [6]. In order to cope with saturation, many authors had focused on the 
linearization of VIs response to LAI by the development and the assessment of indices 
based on spectral bands or calculation procedure more suited to better discriminate the 
effect of chlorophyll and water content [7–9]. However, assuming a linear relation 
between VIs and LAI would imply also to assume a non-finite domain of the response 
variable and that reflectance depend on a oversimplified scheme, made by one or few 
variables at least. Thus, despite a proliferation of indices, an accurate estimation of LAI 
from satellite, based on empirical approaches, is still challenging because the analysis 
and the interpretation of land surface reflectance are influenced by the coexistence of 
uncertainty sources, varying differently in time and space [10–12]. The difficulty in 
measuring LAI by remote increases in heterogeneous scenes, such as mosaics of crops 
at different phenological stages or complex mixtures of woodlands and/or 
grasslands[13]. 

Thus, a diversified ground-LAI dataset, including different sources of variability, 
such as different crop types over different phenology stage (Genetics - G), under 
different soil and climatic seasons (Environment - E) and farming condition 
(Management - M) should be used in order to define a generalized regression function 
for LAI estimation in relation able to deal with G x E x M interaction [4]. With this 
purpose several authors have already evaluated a number of candidate spectral regions 
more suited to VIs formulation, considering different crop types and phenology stages 
[14,15]. In particular, VIs based on visible (VIS) and red-edge (RE) spectral regions 
were evaluated sensible to green LAI (vegetative stages), while the short-wave infrared 
(SWIR) region was evaluated suited to senescent stages [16–18]. Past research, based 
on hyperspectral reflectance data showed that narrow bands VIS-based and RE-based 
VIs were able to accurately estimate LAI of different crops, maize, soybean, potato, 
and wheat, using a generalized regression function [12,19]. Moreover, due to the strong 
absorption by chlorophyll pigments the VIS-based indices are less sensitive at ground-
LAI values > 2–3 respect to the RE-based VIs [20], while the RE region due to lower 
absorption by chlorophyll is more sensitive at moderate-to-high ground-LAI values 
[21]. Delegido et al [15], using simulated S2 data, demonstrated that RE based VIs were 
more sensible to a wide range of ground-LAI values of different crop types than VIS-
based indices. Xie et al., [13] using real S2 data indicated the RE-based VIs are suitable 
for LAI estimation of different crop types during the entire period of growth. However, 
the feasibly of S2-based VIs is still under investigation, and the contribution of different 
spectral regions should be further assessed in order to improve LAI estimation over a 
wide range of ground-LAI values, considering different crop types, phenology stages, 
soil condition and farm management systems [15,22]. 

All this considered, the objective of this study was to exploit a data set of wide range 
of ground LAI (monthly measurements for two crops x two seasons x 3 farms) to 
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analyse performances of different Sentinel-2 VIs computed with bands combination in 
the VIS, RE and SWIR region for the estimation of LAI in mixed-crop scenario.  

In order to achieve this, specific objectives were: 
1) to evaluate and compare the accuracy of S2-based VIs for LAI estimation by 

exploiting parametric regression on different crops (winter wheat and maize) under 
different management conditions;  

2) to assess the sensitivity of VIs to ground-LAI variation; 
3) to assess influence of different crops on parametric relation.  

2 Materials and methods 

2.1 Test sites 

The study sites were located in Pisa, Tuscany Region, Central Italy, on a flat area 
over 31,500 hectares, mainly dedicated to the cultivation of arable crops. The climate 
is Mediterranean with a mean annual precipitation of 907 mm and a mean annual 
temperature of 15°C (long term average 1986-2016). According to land cover spatial 
information from the Tuscany regional authorities (http://dati.toscana.it/), in 2018-2019 
two prevalent crop types were identified: (i) winter wheat (Triticum aestivum L.), 
among cold season cereals (ii) maize (Zea mays L.) among warm season crops. For the 
construction of the database three test sites have been identified, characterized by 
different soil and farm management conditions. Thus, ground-LAI of the two crops, 
during two fields campaign (2018 and 2019) have been measured in each site according 
to the following schedule: (i) from March to June for winter wheat, (ii) from July to 
August for maize.  

 
2.2 round-LAI measurements  

Ground-LAI was measured for each crop in each site with a bi-weekly frequency by 
means of ceptometer SunScan Delta-t Canopy Analysis System (Delta-T Devices, 
Cambridge, UK). The ground-LAI measurements were collected from March to 
October in the 2018 and 2019 only on clear-sky days according to Sentinel-2 
overpassing (at approximately 11:30 A.M. local time) with a maximum of 5 days’ 
difference. In total 16 sampling date were scheduled for the sampling area. According 
to the VAlidation of Land European Remote Sensing Instruments (VALERI), the 
sampling strategy was based on Elementary Sampling Units (ESU) upscaling approach 
in order to capture the variability across the study area and within the field of each crop 
[23]. In total 192 samples were collected (4 ESUx 3 fields x 3 Farm x 16 time), 132 
during the 2018 and 60 during the 2019 field campaign.  

 
2.3 Sentinel-2 Data 

The Copernicus Sentinel-2 (S2) is a satellite mission carrying the Multispectral 
Instrument (MSI) sensor with a high spatial resolution (10 m, 20 m and 60 m), high 
revisit capability (5 days with two satellites) and a moderately large band set (13 
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spectral bands) from the visible to short-wave infrared [24,25]. The S2 Level 2A (L2A) 
images were downloaded from the Theia Land Data Centre, which provides time series 
of top canopy surface reflectance orthorectified and atmospherically corrected with 
MACCS-ATCOR Joint Algorithm (MAJA) [26]. A total of 16 cloud-free images, 
collected in correspondence of the in-situ monitoring period, were used to analyse the 
relationship between measured ground-LAI and VIs. 

 
2.4 VIs computation  

Spectral reflectance data derived from Sentinel-2 were used to calculate 11 VIs, 
selected according to previous studies carried out on the two crop types considered in 
this work [13,17,18,22,27]. (Table 1). 

Table 1. Vegetation Indices (VIs) evaluated in the study. The ρ represent reflectance of 
Sentinel-2. 

VIs Name  Formula Reference 
Visible     
EVI Enhanced Vegetation 

Index 2.5*(ρ865-ρ665)/(ρ865+6*ρ665-(7.5*ρ490) +1) [28] 

NDVI Normalized difference 
vegetation index (ρ865-ρ665)/(ρ865+ρ665) [5] 

NIRv 
Near-Infrared 
Reflectance of 
vegetation 

(ρ865-ρ665)/(ρ865+ρ665) *ρ865 [29] 

NDVIgr      

WDVI Weighted Difference 
Vegetation Index ρ865-ρ665*(ρ865/ρ665) [30] 

Red-edge     
NDVIre1  NDVIRed-edge 1  (ρ740-ρ705)/(ρ740+ρ705)  
NDVIre2  NDVIRed-edge 2  (ρ783-ρ705)/(ρ783+ρ705)  
SeLI Simple Sentinel-2 LAI 

Index (ρ865-ρ705)/(ρ865+ρ705) [13] 

NDI45 Normalized Difference 
Index (ρ705-ρ665)/(ρ705+ρ665) [15] 

SWIR     
NBR Normalized Burn Ratio (ρ865-ρ2190)/(ρ865+ρ2190) [32] 
NDII Normalized Difference 

Infrared Index (ρ865-ρ1610)/(ρ865+ρ1610) [33] 

 
Once the VIs were calculated, the centroid of each ESU was used to extract zonal 

statistics from raster images for each sampling time of S2 time series in order to couple 
the ground-LAI value and the VIs value. Only VIs values derived from images acquired 
within ±5 days from ground data collection were considered. As a result, a complete 
SQL database, of 192 records, of coupled ground-LAI and VIs values, was obtained for 
the three crops of each farm in the reference period March 2018 - October 2019.  
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2.5 Analysis of the ground-LAI to VIs relation 

The relationship between ground-LAI and VIs was analysed by using: (i) linear, (ii) 
logarithmic and (iii) second order polynomial functions. In order to evaluate the 
performances of the parametric regression approach data were randomly divided in 
train (75%) and test (25%) dataset and functions performances were evaluated by the 
coefficient of determination (R2), the Root Mean Square Error (RMSE) and the Mean 
Absolute Error (MAE). Furthermore, to evaluate the different VIs sensitivity to ground-
LAI estimation the noise equivalent (NE) was calculated as: 

 

𝑁𝐸𝛥𝑔𝑟𝑜𝑢𝑛𝑑 − 𝐿𝐴𝐼 =
𝑅𝑀𝑆𝐸 𝑉𝐼𝑣𝑠𝑔𝑟𝑜𝑢𝑛𝑑𝐿𝐴𝐼
𝑑 𝑉𝐼 𝑑 𝑔𝑟𝑜𝑢𝑛𝑑𝐿𝐴𝐼

 

 
where d(VI)/d(ground-LAI) is the first derivative of the VI with respect to ground-

LAI, and RMSE (VI vs. LAI) is the RMSE of the VI vs. ground-LAI relationship. All 
the statistical analysis was computed in R software. The NEΔground-LAI provides a 
measure of how well the VI responds to ground-LAI across its entire range of variation 
[34]. The NEΔground-LAI takes into the sensitivity of the VI to ground-LAI, thus 
providing a metric accounting for both the scattering of the points from the best-fit 
function and the slope of the best-fit function. In the end, to test the applicability of the 
identified regression models to estimate the ground-LAI over different crop type the 
analysis of covariance (ANCOVA) was performed. ANCOVA allows to identify if crop 
specific regression is significantly best performing than the mix-crop model hence 
indicating the capacity of the VI based regression model to be exploited across different 
cropping systems. 

3 Results and discussion 

3.1 ground-LAI relation with VIs 

For each VIs the best performing function was evaluated according the highest R2 and 
the lowest errors (RMSE and MAE). In Table.1 are reported all the analyzed 
relationship between ground-LAI and VIs over the testing dataset. In general, for all 
the evaluated VIs, the linear model and the second order polynomial showed the best 
performances with R2 > 0.4 and RMSE < 0.18. In particular, linear model showed a 
higher accuracy with EVI, NIRv and NDI45 with R2 of 0.69, 0.51 and 0.42 and RMSE 
of 0.13, 0.08 and 0.16 respectively. Similarly, [22] based on 108 ESU of the SPARC 
2003 dataset, concluded that the linear model was the most suited regression function 
for estimating LAI values (R2=0.82) exploiting a pool of various crops. Conversely for 
NDVI, WDVI, NDVIgr, SeLI, NDVIre1, NDVIre2, NDII and NBR the second order 
polynomial function showed the best performances with R2 > 0.4 and RMSE < 0.18. 
These finding for the VIS and RE VI categories are in agreement with other study 
results [9]; The authors, using RapidEye sensors, demonstrated that when different 
crops (winter wheat, barley, alfalfa and maize) and vegetation stages are analysed 
together, relation between LAI and VIs is non-linear. 
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In addition, the comparison of the different fitting functions revealed that VIs with 
saturation behaviour at moderate/high LAI values (i.e. > 3) show polynomial function 
as best fitting.  

Table 2. Best-fit functions for the relationships between ground-LAI and vegetation indices 
(VIs) obtained over the validation dataset. The reported metrics were: (i) coefficient of 

determination (R2) (ii) the Root Mean Square Error (RMSE) and (iii) the Mean Absolute Error 
(MAE). Model type: lm=linear; poly=second-order polynomial function and log=logarithmic 

VIs model a b c R2 MAE RMSE 
EVI lm 0.095 0.289   0.69 0.11 0.13 
EVI log 0.228 0.355   0.63 0.1 0.12 
EVI poly -0.031 0.272 0.095 0.66 0.1 0.13 
WDVI lm 0.04 0.23   0.48 0.06 0.07 
WDVI log 0.093 0.26   0.51 0.05 0.07 
WDVI poly -0.013 0.114 0.152 0.51 0.05 0.07 
NDVI lm 0.128 0.359   0.5 0.13 0.16 
NDVI log 0.29 0.466   0.57 0.12 0.15 
NDVI poly -0.033 0.315 0.163 0.59 0.12 0.14 
NDVIgr lm 0.125 -0.121   0.39 0.15 0.19 
NDVIgr log 0.267 -0.004   0.38 0.13 0.18 
NDVIgr poly -0.01 0.18 -0.179 0.4 0.15 0.18 
NIRv lm 0.061 0.098   0.51 0.06 0.08 
NIRv log 0.142 0.147   0.5 0.06 0.08 
NIRv poly -0.018 0.161 -0.008 0.5 0.06 0.08 
SeLI lm 0.12 0.249   0.38 0.14 0.18 
SeLI log 0.28 0.343   0.46 0.14 0.16 
SeLI poly -0.032 0.3 0.056 0.48 0.14 0.16 
NDVIre1 lm 0.132 0.298   0.56 0.12 0.15 
NDVIre1 log 0.304 0.404   0.58 0.12 0.15 
NDVIre1 poly -0.034 0.324 0.092 0.61 0.11 0.14 
NDVIre2 lm 0.123 0.374   0.62 0.14 0.16 
NDVIre2 log 0.285 0.468   0.66 0.13 0.15 
NDVIre2 poly -0.032 0.305 0.173 0.69 0.12 0.14 
NDI45 lm 0.118 0.048   0.42 0.13 0.16 
NDI45 log 0.246 0.159   0.36 0.11 0.16 
NDI45 poly -0.009 0.165 -0.001 0.41 0.13 0.16 
NBR lm 0.13 0.202   0.55 0.14 0.16 
NBR log 0.295 0.309   0.67 0.11 0.13 
NBR poly -0.034 0.322 -0.003 0.7 0.11 0.13 
NDII lm 0.107 -0.007   0.59 0.11 0.13 
NDII log 0.248 0.079   0.63 0.1 0.12 
NDII poly -0.03 0.275 -0.183 0.68 0.1 0.12 

 
3.2 VIs sensitivity to ground-LAI 

Figure.1 shows NE Δ ground-LAI values of the best performing functions (linear and 
second-order polynomial) for VIS, RE and SWIR group of VIs. Because of first 
derivative of linear function is constant (slope), the NE values is constant across the 
range of ground-LAI variation. Therefore, results of linear function showed a shingly 
variation of NE values among all the VIs with the exception of WDVI that exhibited 
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the highest NE values (the lowest sensitivity to LAI). Conversely, polynomial function 
showed that for all the VIs the NE values rapidly increase for ground-LAI > 2 m2/m2. 
By means NE analysis, several authors identified VIS and RE most appropriate regions 
to predict ground LAI below and above 2 respectively, and then suggested the use of 
composed VIs method for LAI estimation [12,35]. However, in this study NE values, 
for both linear and polynomial functions, varying according to the different VIs without 
specific behavior in relation to spectral groups.  

 

 
 

Fig. 1. Noise equivalent (NE) of the ground-LAI and VIs for linear function and second-order 
polynomial function. Different colours represent the VIs and line type the spectral regions (VIS, 
RE and SWIR).  

 
Fig. 2. Graphic representation of ANCOVA test values for the VIs – LAI relation by considering 
as factor crop types. Colour represents the spectral regions considered in VIs calculation. Dashed 
line shows the limit (p = 0.05) of statistical significance for evaluate the VIs influenced by crop 
factor.  

The ANCOVA test was performed in order to select the most accurate VIs for LAI 
prediction of different crop types. Thus, Figure.2 reports the p-values of the ANCOVA 
test for all the evaluated VIs. Results showed that VIS based indices showed the lowest 
influence to crop type in the definition of the ground-LAI VIs relation. In particular, 
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relation based on NIRv, EVI and WDVI are not significantly influenced by considered 
crop as demonstrated by a p-value of 0.12, 0.07 and 0.42 respectively. Conversely for 
the RE based indices only the NDI45 – LAI relation was uninfluenced by the crop type 
(p value of 0.52). Moreover, NBR (SWIR based VIs) showed a p value of 0.10 and thus 
was not influenced by crop type in ground-LAI predictions.  

4 Validation and map demonstration 

Validation was performed on the best VIs for each category by considering 
regression performance (R2 and MAE), sensitivity to LAI variation (NE) and 
(non)influence of crop typology (ANCOVA test). Results of validation for EVI, NDI45 
and NBR are presented in Figure. 3, in general all the considered VIs can provide good 
LAI estimation with predictive capability (R2 > 0.6 and RMSE < 0.8). The estimated 
LAI values, using the most suitable VIs and the most accurate function, revealed that 
linear model with EVI exhibited the highest correlation (R2 = 0.72) and lowest error 
(RMSE = 0.67). NBR provided lower accuracy with respect to EVI (R2 = 0.67 and 
RMSE 0.72). According to [13], SWIR band (S2-B12:2190 nm) can improve the LAI 
estimation when the regression model is calibrated on healthy crops, but it is inadequate 
when different conditions (phenological or water stress) were considered together. 
Among the three VIs, the less accurate performances were obtained by using the NDI45 
with R2 of 0.6 and RMSE of 0.78. This results was in contrast with findings of  
Frampton et al., [18] that identified the NDI45 the best performing VI for ground-LAI 
estimation over different crop types. An explanation of the different behaviour of 
NDI45 response according to the crop species could depend on the complex of factors 
affecting reflectance in relation to the covariation of soil coverage, canopy structure, 
water and chlorophyll content in the different growth stages [9].  

 

 
 

Fig. 3. Validation scatter plot of the best performing VIs colours represents the two crops (maize 
and winter wheat)   

Previous works have pointed out particular emphasis on chlorophyll content, whose 
level in the canopy significantly affect light absorbance by crop. In particular, Houborg 
et al., [36], analysing the LAI response to NDVI in relation to the chlorophyll content, 
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evidenced that the decreasing of chlorophyll affects the shape of NDVI-LAI curve, 
lowering the saturation threshold of the index. Moreover, Xie et al., [9] evidenced that 
at same LAI values, leaf chlorophyll content may vary significantly among different 
crops.   

  
Figure 4 provides example of LAI maps obtained with the identified EVI – LAI 

relation for wheat (panel a, b and c) and maize (panel d, e and f). Values are in the 
expected range and changes according to crop growth. It is interesting to notice how 
the maps produced with S2 decametric data can provide useful information to highlight 
also within field variability, such data are in fact expected input also for precision 
farming management.  

 
 

Fig. 4. Maps of estimated LAI with EVI based on linear function. In the figure above are reported 
the wheat stem elongation (a) booting, (b) maturity stages and in the figure below the (d) 
emergence, (e) stem elongation and maturity of maize 

5 Conclusion 

This study investigated performances of different S2 VIs computed with bands 
combination in the VIS, RE and SWIR region for the estimation of LAI in mixed-crop 
scenario by exploiting a dataset of wide range LAI values (two crops x two seasons x 
3 farms). Results show that all S2-Vis are generally well correlated to ground LAI, 
among the 11 tested ones EVI, NDI45 and NBR shows best results for the three 
considered categories. Best parametric model was obtained with linear function, NE is 
below or comparable to the others one and ANCOVA tested revealed no significant 
influence of crop type. In fact, the identified VIs were evaluated crop type insensitive, 
thus may not require re-parameterization under different crop types. From the analyzed 
experimental data, EVI resulted the best one to be used to generate LAI product for 
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mixed-crop scenario. The identification of VI – LAI relation insensitive to crop type 
may improve the predictability of LAI from a multi-crop patchiness scene. Moreover, 
EVI can exploit 10 m S2 bands hence producing products able to highlight within field 
spatial variability. Nevertheless, further studies are required to test the suitability of 
these VIs for the remote estimation of ground-LAI not only in wheat and maize but also 
in other crop type in different environmental conditions. 
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