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Abstract.  

Lakes are integrators of environmental and climatic changes occurring within their contributing 
basins. Understanding the complex behaviour of lakes in a dynamic environment is essential for 
effective management of water resources and mitigation of climate change effects. The Lakes 
CCI project is a multi-disciplinary ESA (European Space Agency) funded project that aims to 
use satellite Earth Observation data to create the largest and longest possible global record of the 
five climate variables of lakes: lake water level, extent, temperature, surface-leaving reflectance 
and ice cover. The phase 1 version of the database covers 250 lakes distributed globally, while 
the phase 2 version is expected to expand to 2000 lakes. The temporal coverage varies depending 
on the parameter, with data ranging from 1992 to 2019. The potential of the dataset is explored 
for two Italian lakes and one Swedish lake: i) Trasimeno, a shallow eutrophic lake, ii) Garda, a 
deep subalpine oligotrophic lake, and iii) Erken, a shallow meso-eutrophic lake. These areas are 
a specific case study of the lakes CCI project included in the Long-Term Ecosystem Research 
(LTER) network. The obtained satellite products will be compared and integrated with the 
corresponding in situ data in the LTER dataset. Time-series of satellite data are then explored to 
examine trends in the context of key meteo-climatic variables, comparing the effects of climate 
change in the two different geographic areas of northern and southern Europe. 
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1. Lake Trasimeno ECV and trends: methodology and 
assessment 

 
For Lake Trasimeno, lake surface water temperature (LSWT) and chlorophyll-a (Chl-
a) (derived from water-leaving reflectance data from MERIS and OLCI sensors) were 
extracted from the CCI Lakes database version 1.0, the dataset for LSWT dates from 
1993 while that for Chl-a starts in 2002. Daily climatic data (wind vectors for speed and 
direction, 2 m air temperature, total precipitation, and the sum of rainfall for the 
preceding seven days) were obtained from ERA5, the fifth generation of the European 
Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis for the global 
climate and weather (https://cds.climate.copernicus.eu/cdsapp#!/home). Lake level at 
S. Savino station was obtained from the regional authority (Umbrian Regional 
Hydrographic Service; https://annali.regione.umbria.it/#). Daily values of the North 
Atlantic Oscillation (NAO) were obtained from NOAA-CPC 
(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml). 
Non-Parametric Multiplicative Regression (NPMR) and Google AI (Artificial 
Intelligence) models were used to analyse the data. In order to understand the factors 
influencing the dynamics of Chl-a in Lake Trasimeno, we first carried out a NPMR 
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including the variables day of year (DOY), year, lake level, LSWT, wind vectors, the 
NAO, and the sum of the antecedent rain for 7 days (Table 1). The best model had an 
xR2 of 0.62 and included DOY, year, lake level, and the NAO; however, the NAO was 
interchangeable with LSWT (Table 1). The sensitivity value provides an indication of 
the importance of the variables in the models. 
 
Table 1. Results of NPMR (Nonparametric Multiplicative Regression) models for Chlorophyll-
a (adapted from [1]). xR2 = cross-validated R2; Ave. size = Average neighborhood size; Tol. = 
Tolerance; Sen. = Sensitivity; NAO = North Atlantic Oscillation; Level =lake level; LSWT = 

lake surface water temperature.  
 Model 1 (NAO) Model 2 (LSWT) 

xR² 0.62 0.62 
Ave size 99.1 98.7 

Variable 1 DOY DOY 

Tol. 18.3 18.3 
Sen. 0.338 0.331 

Variable 2 year year 

Tol. 1.2 1.2 
Sen. 0.065 0.064 

Variable 3 Level Level 

Tol. 0.7 0.6 
Sen. 0.014 0.017 

Variable 4 NAO LSWT 

Tol. 3.3 13 
Sen. 0.004 0.006 

p 0.045 0.045 
 
 
The models for Chl-a concentration were most influenced by the time variable (87% of 
feature importance), followed by the NAO variable (4% of feature importance). In fact, 
in Lake Trasimeno the Chl-a dynamics show a summer bloom that starts consistently in 
July and typically peaks in early September, while when there is a positive NAO, 
associated with high pressure and a warm, sunny weather, it leads to an increase in Chl-
a concentrations, as confirmed by the NPMR and this is mostly important during early 
to mid-September. Regional climate indices, as well as the more obvious nutrient 
drivers of phytoplankton blooms, should therefore be considered in the management of 
the lake. However, the relative role of these parameters and other factors in influencing 
Chl-a is difficult to apportion because they are seasonally correlated. Analyzing 
phytoplankton phenology, it is interesting to note that a longer warmer season, typically 
beginning early in the year, leads to a shorter duration of blooms, possibly due to 
seasonal nutrient restriction and possibly increased of co-precipitation of phosphorous 
and calcite. 
In addition to the data provided by the datasets described above, an in situ WISPstation 
sensor was also used to provide information on chlorophyll-a and phycocyanin 
concentrations in near real time (every 15 minutes). Comparison of the high-frequency 
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WISPstation data (2018-2020) with the CCI dataset allows detailed cross-validation, 
revealing that rapid fluctuations in the satellite records were supported by in situ data 
which might otherwise have been interpreted as noise. In addition, using phycocyanin 
results from the WISPstation showed, in near real-time, how cyanophytes played a key 
role in the sudden increases and decreases in Chl-a in mid- and late summer (Fig. 1). 
The coupling of climate indices, satellite data and near-real-time Chl-a concentrations 
allowed for a greater understanding and improved state of knowledge of the conditions 
and changes in water quality in Lake Trasimeno and its relationship with climate 
change.  
 
 

 
Fig. 1. In the upper graph estimates of Chl-a from the CCI project (Chla_CCI), and Chl-a 
(Chla_WISP) and phycocyanin (PC_WISP) estimated from Wispstation data in 2019. In the 
lower graph the cyanobacteria species biovolume (modified from [1]).  

 
 

2. Lake Garda ECVs and trends: methodology and assessment 
 
Lake Garda with the other lakes in the subalpine region of Northern Italy have 
experienced an increase in water temperature, with warmer winters leading to more 
stable water stratification and an alteration of the mixing regime due to climate change.  
The time series of satellite Chl-a concentration was obtained from four optical sensors 
MERIS, OLI, MSI and OLCI covering a time span of 16 years (2003-2018) providing 
a high temporal and spatial resolution. Some evidence for a change in phenology of the 
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phytoplankton was found in a shift in timing of the traditional Chl-a peak. The pattern 
changed from a concave shape (spring peak, clear phase, summer/autumn peak) to a 
convex shape (dominant summer concentrations) i.e., there was a shift from spring and 
summer/autumn blooms towards more intense summer blooms after 2015. In addition, 
there was a tendency for this shift to be interspersed with a period of lower Chl-a (Fig. 
2). We tested for a trend using Theil-Sen function, accounting for seasonal variation 
and interpolating missing data, and found evidence for a significant decline in Chl-a in 
Lake Garda from 2003 to 2018 (Fig. 2). 
 

 
Fig. 2. Lake Garda, chlorophyll-a TheilSen trend with removal of seasonal variation and 

interpolation of missing data. The solid red line shows the trend and the dashed red lines show 
the 95% confidence intervals. The slope value is -0.14 mg m-3 / year, with 95% confidence 
intervals of -0.19; -0.1 mg m-3 / year, from 2003 to 2018. 

To test for a change in seasonal pattern we fitted a second-order polynomial to Chl-a 
for each year between April and October. The coefficient of the squared term was then 
assessed to see if it was changing from positive (a concave pattern) to negative 
(indicating a convex pattern) over time. A significant negative trend for Garda was 
found with a slope of -0.032 (p ≤ 0.05).  To explore the drivers of this change we used 
NPMR which resulted in a model for Chl-a with a xR2 of 0.58 (p ≤ 0.05) and included 
the variables time, air temperature and winter (DJF) air temperature. In Lake Garda, the 
winter temperature had the highest sensitivity value (0.31) compared to time (0.04) and 
air temperature (0.25). 
The decline and alteration of the seasonal pattern of Chl-a peaks is probably caused by 
the cascading effects of increasing winter temperatures and reduced winter turnover, 
which exerts a significant control on nutrient dynamics. Future trends will depend on 
climate change and interdecadal climatic factors. 
 
 

3. Lake Erken ECVs and trends: methodology and assessment 
 
For Lake Erken, time series of satellite data on four parameters that can be estimated 
by remote sensing (LSWT, Lake Ice Cover (LIC), Chl-a and Turbidity) were extracted 
using the MERIS and MODIS sensors for data from 2002 to 2015, while the OLCI 
sensor was used for data from 2016 to 2020 (extracted from the CCI Lakes database 
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version 1.0). As in the two previous cases, the daily climate data (wind vectors for speed 
and direction, air temperature at 2 m, total precipitation and sum of precipitation of the 
previous seven days) were obtained from ERA5, and the daily values of the North 
Atlantic Oscillation (NAO) were obtained from NOAA-CPC. 
For the past 30 years, a substantial environmental monitoring programme has been 
underway that includes manual and automatic high-frequency measurements of 
physical and chemical water parameters as well as plankton composition. Lake Erken 
is one of the very few lakes in Northern Europe that has a long history of monitoring 
and through the integration of remote sensing data it is possible to study and monitor 
water quality in response to climate change more effectively and efficiently, as well as 
identify any extreme events. 
The non-parametric Theil-Sen Estimates test was used to analyse the data. The test for 
LSWT and LIC did not show significant trends, and the two variables were significantly 
negatively correlated (r=-0.5). Instead, a significant negative trend over time was found 
for Turbidity (Fig. 3). Moreover, the seasonal analysis shown a significant decrease in 
turbidity in the summer. Turbidity was also positively correlated with air (r=0.59) and 
water (r=0.61) temperatures. The time series indicated a significant increase in Chl-a 
(Fig. 4) and air temperature, specifically Chl-a increased in spring and summer, while 
air temperature increased significantly in summer and winter. Indeed, thermal 
stratification and the mixing process, influenced by the change in temperature, appear 
as a primary response that subsequently determines the phytoplankton's exposure time 
to light and the nutrient concentrations in the epilimnion, ultimately influencing 
phytoplankton development. The seasonal succession pattern of phytoplankton in Lake 
Erken is characterised by two chlorophyll peaks occurring in spring and autumn 
(dominated by diatoms), interspersed with a summer bloom. A regular bloom of the 
colonial cyanobacterium Gloeotrichia echinulata occurs between mid-July and early 
August, and these algae migrate rapidly to the surface when strong vertical stratification 
is present [3]. Under these conditions, where a large portion of the lake's chlorophyll is 
present in the upper layers of the water column, it provides an interesting test for the 
application of remote sensing methods. 
Our results can be integrated with previous studies on the effects of climate change on 
the phytoplankton community and timing of blooms. For example [4] reported 
significant variation of spring diatom communities and period of growth driven by 
warmer winters.  
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Fig. 3. Lake Erken, Turbidity (NTU) TheilSen trend with removal of seasonal variation and 

interpolation of missing data. The solid red line shows the trend and the dashed red lines show 
the 95% confidence intervals. The slope value is -0.08 NTU / year, with 95% confidence intervals 
of -0.12; -0.03 mg m-3 / year, from 2003 to 2018. 

 
Fig. 4. Lake Erken, chlorophyll-a (Chl-a; mg m-3) TheilSen trend with a gap from 2012-2016 

(end of mission Envisat, start of mission Sentinel-3). The solid red line shows the trend and the 
dashed red lines show the 95% confidence intervals. The slope value is 0.29 mg m-3 / year, with 
95% confidence intervals of 0.17; 0.43 mg m-3 / year, from 2003 to 2018. 

 
4. Conclusions 

 
Lakes are special and complex ecosystems because they are influenced by many 
variables and have diverse catchment and lake characteristics and climate. This 
complexity means that the study of a lake cannot be achieved by approaching it with a 
single discipline. The study of a lake must therefore be approached in an 
interdisciplinary manner, i.e. taking into account a broad suite of information, 
synthesizing the surrounding environment, the effect of hydrodynamics and 
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meteorological conditions. For these reasons, remote sensing is an ideal complementary 
technique for studying lakes. 
 
This study showed changes in the parameters that can be estimated by remote sensing, 
including significant alteration to chlorophyll-a concentrations in the lakes under study. 
Another aspect highlighted in the study is the variation in response to climate change 
in lakes in different geographical regions and with different trophic and morphological 
characteristics, comparing northern Europe with southern Europe. 
 
The comparison between lakes distributed in different regions of Europe has made it 
possible to highlight trends and phenomena with respect to the responses of the lakes 
to climate change. For example, the examination of the time series of chlorophyll-a in 
Garda indicated the potential influence of warmer winters reducing lake overturn 
leading to lower nutrient entrainment to the upper layers which thereby alters the 
phenology, especially reducing the spring bloom. The cause of the lack of vertical 
mixing of lakes is attributed to long-term climate change and fluctuations in large-scale 
regional climate factors such as the North Atlantic Oscillation (NAO), and in particular 
the East Atlantic (EA) pattern during winter. These large-scale climate movements 
control the climate in Europe, especially in the north, and undergo oscillations every 10 
years.  
 
In contrast, a long-term positive trend was detected for Lake Erken. On the other hand, 
in Lake Trasimeno the algal bloom pattern remained unchanged but warmer summers 
increased concentrations of Chl-a but the trend towards longer warmer seasons is likely 
to generally reduce bloom duration in summer/autumn through earlier exhaustion of 
nutrients.  
 
In conclusion, the integration between the data obtained with remote sensing and the in 
situ data made it possible to study and monitor the quality of the water in an effective 
and efficient way and to identify any changing phenomena, their influence on water 
quality as well as exploring the main drivers.  
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